5 resultados para Genotoxicity

em Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The toxicity of herbicides used in agriculture is influenced by their chemical stability, solubility, bioavailability, photodecomposition, and soil sorption. Possible solutions designed to minimize toxicity include the development of carrier systems able to modify the properties of the compounds and allow their controlled release. Polymeric poly(epsilon-caprolactone) (PCL) nanocapsules containing three triazine herbicides (ametryn, atrazine, and simazine) were prepared and characterized in order to assess their suitability as controlled release systems that could reduce environmental impacts. The association efficiencies of the herbicides in the nanocapsules were better than 84%. Assessment of stability (considering particle diameter, zeta potential, polydispersity, and pH) was conducted over a period of 270 days, and the particles were found to be stable in solution. In vitro release kinetics experiments revealed controlled release of the herbicides from the nanocapsules, governed mainly by relaxation of the polymer chains. Microscopy analyses showed that the nanocapsules were spherical, dense, and without aggregates. In the infrared spectra of the PCL nanocapsules containing herbicides, there were no bands related to the herbicides, indicating that interactions between the compounds had occurred. Genotoxicity tests showed that formulations of nanocapsules containing the herbicides were less toxic than the free herbicides. The results indicate that the use of PCL nanocapsules is a promising technique that could improve the behavior of herbicides in environmental systems. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of nanoparticles in food packaging has been proposed on the basis that it could improve protection of foods by, for example, reducing permeation of gases, minimizing odor loss, and increasing mechanical strength and thermal stability. Consequently, the impacts of such nanoparticles on organisms and on the environment need to be investigated to ensure their safe use. In an earlier study, Moura and others (2008a) described the effect of addition of chitosan (CS) and poly(methacrylic acid) (PMAA) nanoparticles on the mechanical properties, water vapor, and oxygen permeability of hydroxypropyl methylcellulose films used in food packaging. Here, the genotoxicity of different polymeric CS/PMAA nanoparticles (size 60, 82, and 111 nm) was evaluated at different concentration levels, using the Allium cepa chromosome damage test as well as cytogenetic tests employing human lymphocyte cultures. Test substrates were exposed to solutions containing nanoparticles at polymer mass concentrations of 1.8, 18, and 180 mg/L. Results showed no evidence of DNA damage caused by the nanoparticles (no significant numerical or structural changes were observed), however the 82 and 111 nm nanoparticles reduced mitotic index values at the highest concentration tested (180 mg/L), indicating that the nanoparticles were toxic to the cells used at this concentration. In the case of the 60 nm CS/PMAA nanoparticles, no significant changes in the mitotic index were observed at the concentration levels tested, indicating that these particles were not toxic. The techniques used show promising potential for application in tests of nanoparticle safety envisaging the future use of these materials in food packaging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Agricultural products and by products provide the primary materials for a variety of technological applications in diverse industrial sectors. Agro-industrial wastes, such as cotton and curaua fibers, are used to prepare nanofibers for use in thermoplastic films, where they are combined with polymeric matrices, and in biomedical applications such as tissue engineering, amongst other applications. The development of products containing nanofibers offers a promising alternative for the use of agricultural products, adding value to the chains of production. However, the emergence of new nanotechnological products demands that their risks to human health and the environment be evaluated. This has resulted in the creation of the new area of nanotoxicology, which addresses the toxicological aspects of these materials.Purpose and methods: Contributing to these developments, the present work involved a genotoxicological study of different nanofibers, employing chromosomal aberration and comet assays, as well as cytogenetic and molecular analyses, to obtain preliminary information concerning nanofiber safety. The methodology consisted of exposure of Allium cepa roots, and animal cell cultures (lymphocytes and fibroblasts), to different types of nanofibers. Negative controls, without nanofibers present in the medium, were used for comparison.Results: The nanofibers induced different responses according to the cell type used. In plant cells, the most genotoxic nanofibers were those derived from green, white, and brown cotton, and curaua, while genotoxicity in animal cells was observed using nanofibers from brown cotton and curaua. An important finding was that ruby cotton nanofibers did not cause any significant DNA breaks in the cell types employed.Conclusion: This work demonstrates the feasibility of determining the genotoxic potential of nanofibers derived from plant cellulose to obtain information vital both for the future usage of these materials in agribusiness and for an understanding of their environmental impacts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polyhydroxybutyrate-co-hydroxyvalerate microspheres (PHBV-MS) were prepared as a delivery system for the herbicide atrazine (ATZ). Characterization of the system included investigation of in vitro release properties and genotoxicity. ATZ - PHBV-MS particle diameters showed a size distribution range of 1-13 mu m. Differential scanning calorimetry analyses indicated that ATZ was associated with the PHBV microparticles. The release profiles showed a different release behavior for the pure herbicide in solution, as compared with that containing ATZ-loaded PHBV-MS. Korsmeyer-Peppas model analyses showed that atrazine release from the microparticles occurred by a combination of diffusion through the matrix and partial diffusion through water-filled pores of the PHBV microparticles. A Lactuca sativa test result showed that the genotoxicity of ATZ-loaded PHBV-MP was decreased in relation to ATZ alone. The results demonstrate a viable biodegradable herbicide release system using atrazine for agrochemical purposes.